齿轮工业领域服务平台,行业技术的领航者;
把齿轮传动之脉搏,谱信息时代之新篇!
当前位置: 首页 » 业界资讯 » 行业分析

国内外机器人关节测试技术现状及展望

发布时间:2022-12-28 | 来源:北京精密 | 作者:石照耀,程慧明
 国内外机器人关节测试技术现状及展望

作者:石照耀,程慧明

  引言

  2021年中国机器人行业市场规模为1306.8亿元,预计2022年行业市场规模将达1712.4亿元,同比增长31.0%,增速全球领先。关节是机器人执行姿态控制的执行部件,其性能对机器人的整机性能和可靠性起决定性作用。按动力来源可以分为液压、气动和电机驱动三大类,本文主要介绍电驱动关节。关节主要由传动、控制和传感部分组成,其中传动部分由电机、减速器和结构件组成,控制部分由驱动模块及通信模块组成,传感器部分使用了位置、力矩、电流和温度等。

  随着机器人应用领域与规模的快速扩张,关节种类不断增加、性能也不断优化。与此相适应,对关节性能的表征、测试和评价也成为了当前的研究热点。全面考察机器人关节测试技术现状,发现整体上呈现出四个特点:(1)测试技术多来源于减速器和电机测试技术,缺乏完全适用于关节的整机测试技术。(2)国内外研发的测试设备主要针对大中型关节,而针对小型或微小型关节的测试技术和设备较少。(3)对关节的测试多集中在减速器和电机上,而不是将关节作为一个整体进行测试。(4)测试参数不全面,多集中于关节的定位精度、速度响应能力上,缺少对其传动精度参数、电参数及其与机械参数的测试和融合分析。

  机器人关节的结构不简单,同时蕴含着复杂的能量转化、能量传递以及运动控制等问题。应用场景的多样化对机器人主机装备的运动性能精度、负载控制、能耗效率、振动噪声、服役寿命等性能提出了更高的目标,这对关节的综合性能提出了进一步的要求。因此对机器人关节进行综合性能测试,获取关键性能指标,并为设计提供指导具有重要意义。

  一、关节分类

  1.1 类型

  机器人关节的种类众多,可大致划分为刚性关节和弹性关节两类。

  刚性关节主要由电机、高传动比减速器、编码器、力矩传感器和控制器等组成。Albu-Schaffer等为德国宇航局的轻量机器人设计的机器人关节,包括无刷电机、谐波减速器、绝对编码器、增量编码器、刹车和力矩传感器等,如图1所示。Samuel Rader等设计的机器人关节装有陀螺仪,可以实现更加精准的姿态控制。由于材料和设计上的限制,刚性关节存在功率密度值不高和机器人受冲击情况下关节强度不够的问题,因此刚性关节在使用上存在一定的局限性。

图1 刚性关节

  弹性关节分为串联弹性关节与并联弹性关节两种。弹性关节的设计原理来自于Hill肌肉三元素力学模型,以求更好的模拟人体肌肉功能。Pratt首先提出了串联弹性关节的概念,串联弹性关节在减速器和电机之间增加弹性连杆,用于降低外部冲击载荷和储存能量。Vanderborght等设计了可平衡位置的关节,Negrello等设计了新型关节,并进行了负载能力和抗冲击能力实验,如图2所示。并联弹性关节是在机器人整机上增加并联弹性连杆,通过和关节共同配合,来达到释放冲击和储能的功能。

图2 弹性关节

  1.2 技术要求

  机器人应用场景的多样化对关节的技术提出了不同的需求,以刚性关节为例,大致可以分为两类,如表1所示。

表1 关节技术要求

  第一种类型关节被广泛应用于教育机器人、玩具机器人和餐饮机器人等,对关节的传动精度要求相对较低,通常对整机的回差要求小于60′。减速器的齿轮模数在0.2mm-0.5mm之间,材料以金属和塑料为主,种类有平行轴齿轮减速器、行星齿轮减速器、面齿轮减速器,其中平行轴齿轮减速器较为常见,部分减速器内部会增加离合机构,当机器人跌倒减速器受到冲击时,用于保护内部结构,该类型关节通常没有力矩传感器。

  第二种类型的关节广泛应用于大型双足服务机器人、工业机器人和航空航天领域的空间机械臂等,此类关节对传动精度要求较高,通常对整机的回差精度要求是小于3′。其减速器的传动形式主要有行星减速器、摆线针轮减速器、谐波减速器,其中谐波减速器最为普遍。电机多使用直流无刷电机和永磁同步电机,在安装上多采用无框形式。位置检测传感器有光栅编码器、磁编码器,力矩传感器有应变扭力计。

  二、关节测试方法现状

  机器人关节的性能主要反映在传动精度、机械参数、响应参数和电参数等指标上。减速器和电机作为关节的重要部件,两者测试技术的发展为关节测试技术提供了借鉴,但减速器和电机的质量不能反映关节整机的质量,因此对关节的测试应面向整机。

  2.1 传动精度

  传动误差和回差是评价关节运动输出精度的主要指标。传动误差既反映了传动部分制造误差和安装误差,又反映了其抵抗外界环境(如温度、负载等)的能力。回差则反映了关节传动系统中的间隙,其主要由空程回差、弹性回差、温度回差等组成。

  2.1.1 传动误差

       (1)测试方法

  对精密减速器等传动链的传动误差测试技术研究可以追溯至上世纪50年代,K.Stepanek研制出基于磁栅式传感器测试齿轮机床动态误差的设备。C.Timmc基于光栅式传感器,通过将旋转角位移转换成相应电信号输出以得到传动误差的一种测量方法。黄潼年先生提出了“单面啮合间齿测量法”,发明了齿轮整体误差测量技术。彭东林提出一种时栅传感器,用于对传动误差进行测量。国标GB/T 35089-2018对机器人用谐波齿轮减速器、行星摆线减速器、摆线针轮减速器等精密传动装置的试验设备、传动误差试验方法及其数据处理方法做出规定。机器人关节的传动误差测试技术来源于上述方法,关节的传动误差是指:对应伺服电机任意转角,关节的实际输出转角与理论转角之间的差值,传动误差曲线如图3所示。

图3 机器人关节传动误差示意图

  文献[3]基于光栅法对关节的传动误差进行测试。文献[4]利用高精度光栅测量关节的输出角度,关节电机编码器测量输入端角度,实现了对关节整机传动误差的测试。

  (2)测试难点

  关节是一种复杂的机电一体化产品,由于在工作原理、机械结构、传感器配置和控制方式等方面不同于其他的齿轮传动机构,使得对关节传动误差的测试也存在不同,因此在测试方法上带来了一系列的不确定和难点问题。

  根据GB/T 35089-2018对精密减速器传动误差测试设备的规定,在减速器的输入端和输出端分别利用高精度角度编码器采集角度数据。对关节传动误差的测试,是以关节整机为测试对象,关节输入端角度数据的采集依赖于关节电机编码器。部分关节编码器精度较低或者没有安装电机编码器,因此在此类关节传动误差的测试中如何保证输入角度的有效性是一个难点问题。目前的解决方案有两种,一是文献[4]中所利用的等时间间隔采样方式,该方法可以在一定程度解决编码器精度不足的影响,但该方法可能存在时间滞后和关节本身不支持该模式的问题;二是以控制器发出的指令角度为输入端角度,即以理论转角为输入端角度,该方法符合关节传动误差的定义。

  综上所述,关节的传动误差测试方法多来源于精密减速器等传动装置,但由于关节本身的特点,使得其传动误差的测试方法具有一定的特殊性。

  2.1.1 回差

       (1)测试方法

  机器人关节的回差是指:关节的输入端伺服电机运动方向改变后到输出端运动方向跟随改变时,输出端在转角上的滞后量。按照测试原理的不同,对关节回差的测试可以分为静态测试和动态测试两种。

  静态测试:是指将关节的输入端固定,通过输出端加载、卸载,获取滞回曲线而完成的回差测试,滞回曲线如图4所示。输入端固定,给输出端逐渐加载至额定转矩后卸载,再反向逐渐加载至额定转矩后卸载,记录多组输出端转矩、转角值,绘制完成的封闭的转矩-转角曲线。

图4 滞回曲线示意图

  在关节输出端不同位置进行回差测试,获得各个位置的回差,由此获得静态测试的回差曲线,如图5所示。

图5 静态测试的回差曲线

        动态测试法:通过测试关节的双向传动误差曲线,获取回差曲线而完成的回差测试。首先测出关节正向传动误差曲线,使输入端正向多转一定的角度后反向旋转,然后在相同条件下测出关节反向传动误差曲线,如图6所示。图6中反向传动误差曲线与正向传动误差曲线对应点的代数差即构成回差曲线,如图7所示。文献[5]采用动态测试方法对小型关节进行了回差的动态测试实验,并和静态测试进了对比,发现结果大体一致,可以在一定程度上进行相互印证。

图6 双向传动误差曲线

图7 回差曲线(2)测试难点

  同传动误差测试类似,关节回差的测试也不同于精密减速器等传动装置,对测试方法的研究也需要从关节本身的特点来考虑。

  (1)关节带电状态是影响关节回差测试的一个重要因素,按照关节回差静态测试方法的定义,需要将关节的输入端固定,即电机轴抱死。关节上电后电机轴抱死,在静态测试过程由于电机反向电动势的阻碍,会对测试结果产生影响。(2)角度编码器精度和有无问题同样影响关节的回差动态测试,按照定义需要获得双向传动误差曲线,进而获得回差曲线。在实际测试过程中,若采用等时间间隔采样的方式,则会存在采集点无法对齐的问题。若采用理论角度为输入端角度的方法,则存在测试不连续的问题。(3)联轴器变形会影响关节回差测试结果,在加载测试中需要对联轴器变形进行补偿。

  2.2 机械参数

       2.2.1 启动转矩与反启动转矩测试

  机器人关节的启动转矩测试是指关节的输出端在无负载情况下,关节内部的电机缓慢进行转动,至关节的输出端转动,期间利用关节内部的力矩传感器采集转矩变换情况,利用测试设备的高精度角度传感器来实时判断关节输出端的转动情况,取转矩的最大值为启动转矩,测试曲线如图8所示。需要注意的是若关节内部没有力矩传感器则无法进行启动转矩和反启动转矩测试。

  机器人关节的反启动转矩测试是指关节的输入端在无负载情况下,测试设备的加载电机缓慢进行转动,直至关节的输入端转动,期间利用测试设备的力矩传感器采集转矩变化情况,利用关节内部的输入端角度传感器实时判断关节输入端的转动情况,取转矩的最大值为反启动转矩,测试曲线如图8所示。需要注意的是对关节的反启动转矩测试要在不带电下进行测试,因为电机在带电状态下反向转动会存在反向电动势,对关节转动存在阻碍。

图8 启动(反启动)转矩曲线2.2.2 工作区

  工作区用转速和转矩组成的二维平面坐标区域表示,如图9所示。关节运行时温度不超过关节允许最高温度,能长期工作的区域为连续工作区。图中连续工作区域是由关节的发热、机械强度、以及关节内驱动器的极限工作条件限制的范围。超出连续工作区,允许关节短时过载运行的区域为断续工作区。

图9 工作区

        2.3 响应参数

        2.3.1 位置响应频带宽度

  根据JB-T 10184-2000的规定,对关节位置响应频带宽度的测试应按照如下方式。在给定某一恒定负载的情况下,关节输入正弦波信号,随着正弦波信号频率逐渐升高,对应关节位置输出量的幅值逐渐减小同时相位滞后逐渐增大,当相位滞后增大至90°时或幅值减小至输入幅值的1/根号2时的频率即为系统位置响应频带宽度。

  2.3.2 正/负阶跃输入的位置响应时间

  关节在空载条件下或按照试验要求加载某一恒定负载(根据需求确定转动惯量和扭矩大小)。外部控制器发送由0到1的正阶跃信号给关节,并同步读取角度传感器的数据,记录关节从阶跃信号发出至位置达到0.9的时间;重复上述试验,取多次试验的平均值即为关节的正阶跃输入的位置响应时间,测试曲线如图10。

图10 正阶跃输入的位置响应时间

  同理,外部控制器发送由1到0的负阶跃信号给关节,并同步读取角度传感器的数据,记录关节从阶跃信号发出至位置达到0.1的时间;重复上述试验,取多次试验的平均值即为关节的负阶跃输入的位置响应时间,测试曲线如图11。

图11 负阶跃输入的位置响应时间

        2.4 电参数

  电参数测试用于反映关节在工作状态下电流、转速、功率、效率与转矩之间的关系。电参数测试分为恒定加载测试与梯度加载测试。恒定加载测试是指关节输出端施加某一恒定负载的情况下,测试关节的电流、转速及转矩变化情况;梯度加载测试是指关节输出端梯度加载的情况下,测试关节转矩与电流、转速、效率、输出功率之间的关系,获得相应的特性曲线。

  2.4.1 恒定加载测试

  恒定加载测试的目的是为检测关节在空载或稳定负载情况下,其瞬时电流、瞬时转速及瞬时转矩的波动情况,上述参数测试原理及测试曲线示意图如表2所示。

表2 恒定加载测试

       2.4.2 梯度加载测试

  梯度加载测试的目的是为检测关节在最高转速下,关节输出端负载从0Nm开始等时间梯度加载至堵转力矩为止的过程中,关节的电流、转速、效率、输出功率之间的关系,获得转矩—电流曲线、转矩—转速曲线、转矩—输出功率曲线、转矩—效率曲线以及关节最佳工作区域综合曲线,上述参数测试原理及测试曲线示意图如表3所示。

表3 梯度加载测试

        三、关节测试设备现状

       3.1 大中型关节测试设备

  在工业领域内成熟的商用大中型关节测试设备不多,本文列举多型大中型关节测试设备,从测试范围、测试功能、测试精度、测试原理以及测试数据运用五个方面进行对比,如表4所示。

表4 大中型关节测试设备

  由上表可知,大中型关节测试设备基本以单一类型性能参数测试为主,涉及定位精度、响应参数和机械参数,测试技术主要借鉴电机测试技术,少量来源于精密减速器测试技术,存在测试项单一,功能不完善等不足。在测试数据运用方面,主要目的为验证关节机械设计和运动控制算法的可靠性和有效性。

  目前面向大中型关节的测试设备正朝着综合性能测试和云端测试的方向发展,作者团队所研制的新型机器人关节综合性能测试机可以实现对关节传动精度、机械参数、响应参数、电参数和抗干扰等性能参数的综合测试,测试机的性能指标如表5所示,测试机如图12所示。

表5 新型机器人关节综合性能测试机

图12 服务机器人小型关节综合性能测试机

  利用该测试机实现了对关节性能全面测试,相关测试结果如图13所示,分别为传动误差、抗干扰性能和阶跃响应测试。

图13 关节测试

  测试机还具备云测试与数据云交互的功能,相关架构如图14所示,将关节测试中涉及的测试设备、传感器、控制软件、分析方法、测试方法、测试数据和辅助设备虚拟化为服务资源,通过通用的硬件设备接口和软件接口,依托云平台,实现了各测量资源统一的、集中的信息化和智能化组织管理和运用,最终面向用户提供个性化的测试服务和体验。

图14 关节云测试架构

       3.2 小型关节测试设备

  小型关节测试的难点主要表现在:(1)传感器精度问题,小型关节内部的传感器精度较低,影响测试结果的准确性;(2)传感器缺乏问题,部分小型关节因体积限制,使得关节内部无法安装传感器,导致无法进行测试;(3)外形尺寸小:因小型关节的外形尺寸小,导致配套的测试设备存在夹具设计困难,外部传感器无满足尺寸要求等问题。

  作者团队在一定程度上解决了上述问题,研制了面向服务机器人小型关节的综合性能测试机,填补了国内的空白,其测试关节参数如表6所示,测试机的情况如表7所示。

表6 小型关节参数

表7 小型关节测试设备参数

  测试机如图15所示,主要由被测关节、高精度光栅、力矩传感器、电力分析仪和负载电机等组成。利用测试机对小型关节的回差、电参数和反启动转矩进行测试,相关测试结果如图16所示。该测试机主要解决了三个问题,一解决了小型关节测试手段缺乏的问题;二解决了小型关节整体性能测试难的问题;三解决了关节测试项目单一的问题。

图15 服务机器人小型关节综合性能测试机

图16 能测试机小型关节测试

  综上所述,在机器人关节测试设备研发领域存在测试项单一,测试数据运用不足等的问题,考虑到关节对于机器人市场的重要性和特殊性,对其测试技术的研究和测试设备的开发越发的迫切。

  四、关节测试技术难点和发展趋势

  机器人关节经过了三十多年的发展,机器人主机应用场景的多样化对其关节的性能指标提出更多的需求,相应的为了适应不同场景,关节的结构配置也发生了众多变化。这对关节测试技术提出了更高的要求,关节测试技术面临的难点问题急需克服,下一步的发展方向需要深入讨论。

  4.1 关节测试技术难点

  机器人关节测试技术难点归结为以下六点:

  (1)面向关节的测试方法。前述测试方法多源于精密减速器和电机的测试,但关节的结构配置不同于二者,现有测试方法并未围绕关节的结构特点进行完善。同时考虑到关节结构本身的差异性,需要对刚性和弹性关节等不同类型关节的测试方法进行细化和适应性改变。随着关节应用场景的复杂化,还需要对关节进行抗冲击、抗过载和寿命等极限性能测试,但此类性能指标的测试方法尚处于空白阶段。

  (2)综合性能测试设备。关节是复杂的机电一体化产品,本身对机械设计,能量传递以及运动控制等提出了较高的要求,这要求测试设备能够实现综合性能测试,但目前多数测试设备只能对关节某一项性能参数进行测试。综合性能测试设备需要在机械设计、传感器配置和测试软件开发上满足传动精度、机械参数、响应参数和电参数测试的需求。

  (3)关节配置。在测试过程中,关节本身为输入端,其内部传感器的精度和有无在一定程度上决定测试结果的有效性。如前述所示,关节内部角度编码器的精度越高,关节传动精度测试的结果可靠性越高。

  (4)数据运用。表4和表6总结了部分关节测试数据运用情况,发现测试数据主要用于机械设计、控制算法的验证,并未深入的进行机理性研究,没有依托数据进行精度评价体系建设、误差溯源和性能预报模型的研究,测试在机器人关节设计、制造、使用中的核心作用未得到体现。

  (5)云平台还未利用。应该将云计算、机器学习、人工智能及多传感器数据融合等先进技术引入到关节测试系统和健康监测中,提高关节测试的效率,能够提高关节行业产能和产品质量,增强集成系统和终端用户的故障决策能力。

  (6)测试方法标准化。目前市面上没有一部成熟的关节测试技术标准,相关测试原理,测试方法和测试设备来源于生产和研发机构的摸索。机器人关节行业的飞速发展对关节测试技术标准提出了需求,关节本身的技术要求又对标准的制定提出了更高的要求。

  4.2 关节测试技术的发展趋势

  机器人关节测试技术的发展趋势可以归结为四点:

  (1)需要打通机器人整机测试技术与关节测试技术的壁垒。机器人主机厂商重视机器人整机测试技术,忽视关节测试技术的重要性。机器人关节主机厂商,重视关节本身的测试技术,忽视如何从机器人整机角度去考虑测试技术,因此打通两者测试技术的壁垒显得尤为迫切。而打通两者壁垒的关键是找到之间的关系,既一方面通过对机器人整机进行测试,可以反映某一关节的性能情况。另一方面通过对某一关节进行测试,可以反映出机器人整机的性能。故如何将机器人整机测试和关节整机测试进行融合是今后一个新研究方向。

  (2)重点研究传动精度测试技术。在相当长的一段时间中,工业领域对关节的测试目的是探究关节的负载大小、抵抗干扰能力等,对传动精度的要求较低。随着市场对高精度机器人需求的增长,相适应的对关节传动精度要求也越来越高,因此面向关节传动精度的测试技术是研究的重点。

  (3)对极限性能测试技术提出了需求。随着机器人工作环境越发复杂,对机器人关节的极限性能提出了更多需求。但与之相矛盾的是目前对关节的抗冲击、抗过载和寿命等性能指标的测试技术几乎为空白。因此解决这个矛盾,满足极限性能测试的需求是今后一个时期的核心问题。

  (4)需要建立面向机器人关节的测试标准。目前工业领域对机器人关节的测试标准呼声较高,需要行业内加强合作,深入研究关节测试方法,共同推进面向全局的机器人关节测试方法标准的建立。

  五、结论

  本文围绕机器人关节测试原理、测试方法和测试设备三方面对关节测试技术进行了归纳总结。关节测试技术多源于精密减速器和电机测试技术,但单一部件的性能不能反映关节的质量,需要对关节整机进行测试。在关节传动精度测试中,关节内部角度编码器的精度和有无以及关节电力响应速度等问题都会影响测试结果,这也是关节传动精度的测试难点。总结了测试设备现状,发现了行业对关节测试设备需求的紧迫性。对测试技术的难点问题进行了分析,指出了测试方法不完善、缺乏综合性能测试设备、关节配置不足、数据运用不足、云平台技术缺乏以及还未标准化六个难点问题。展望了关节测试技术的发展趋势,发现正朝着解决测试技术的难点的方向发展。

  (省略参考文献49篇)

[ 业界资讯搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]  [ 返回顶部 ]